A Multiscale Image Representation Using Hierarchical (BV, L2 ) Decompositions

نویسندگان

  • Eitan Tadmor
  • Suzanne Nezzar
  • Luminita A. Vese
چکیده

We propose a new multiscale image decomposition which offers a hierarchical, adaptive representation for the different features in general images. The starting point is a variational decomposition of an image, f = u0 + v0, where [u0, v0] is the minimizer of a J-functional, J(f, λ0;X,Y ) = infu+v=f { ‖u‖X + λ0‖v‖pY } . Such minimizers are standard tools for image manipulations (e.g., denoising, deblurring, compression); see, for example, [M. Mumford and J. Shah, Proceedings of the IEEE Computer Vision Pattern Recognition Conference, San Francisco, CA, 1985] and [L. Rudin, S. Osher, and E. Fatemi, Phys. D, 60 (1992), pp. 259–268]. Here, u0 should capture “essential features” of f which are to be separated from the spurious components absorbed by v0, and λ0 is a fixed threshold which dictates separation of scales. To proceed, we iterate the refinement step [uj+1, vj+1] = arginf J(vj , λ02 j), leading to the hierarchical decomposition, f = ∑k j=0 uj + vk. We focus our attention on the particular case of (X,Y ) = (BV,L2) decomposition. The resulting hierarchical decomposition, f ∼ ∑ j uj , is essentially nonlinear. The questions of convergence, energy decomposition, localization, and adaptivity are discussed. The decomposition is constructed by numerical solution of successive Euler–Lagrange equations. Numerical results illustrate applications of the new decomposition to synthetic and real images. Both greyscale and color images are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

(BV, L2) Multiscale Hierarchical Decomposition: Modes and Rates of Convergence

Tadmor, Nezzar and Vese [Eitan Tadmor, Suzanne Nezzar, and Luminita Vese. A multiscale image representation using hierarchical (BV, L2) decompositions. Multiscale Model. Simul., 2(4):554–579, 2004.] developed a total variation based multiscale method for decomposing a function f ∈ BV into a countable set of features {uk : k = 0, 1, 2 . . .} associated to a sequence of dyadic scales {λk = λ02−k ...

متن کامل

Multiscale deformable registration of noisy medical images.

Multiscale image registration techniques are presented for the registration of medical images using deformable registration models. The techniques are particularly effective for registration problems in which one or both of the images to be registered contains significant levels of noise. A brief overview of existing deformable registration techniques is presented, and experiments using B-splin...

متن کامل

Integro-Differential Equations Based on (BV, L1) Image Decomposition

A novel approach for multiscale image processing based on integro-differential equations (IDEs) was proposed in [E. Tadmor and P. Athavale, Inverse Probl. Imaging, 3 (2009), pp. 693–710]. These IDEs, which stem naturally from multiscale (BV,L) hierarchical decompositions, yield inverse scale representations of images in the sense that the BV -dual norms of their residuals are inversely proporti...

متن کامل

A Multiscale Image Representation Using Hierarchical (bv, L) Decompositions

We propose a new multiscale image decomposition which offers a hierarchical, adaptive representation for the different features in general images. The starting point is a variational decomposition of an image, f = u0 + v0, where [u0, v0] is the minimizer of a Jfunctional, J(f, λ0;X,Y ) = infu+v=f { ‖u‖X + λ0‖v‖pY } . Such minimizers are standard tools for image manipulations — denoising, deblur...

متن کامل

Multiscale Decompositions and Optimization

In this thesis, the following type Tikhonov regularization problem will be systematically studied: (ut, vt) := argmin u+v=f {‖v‖X + t‖u‖Y }, where Y is a smooth space such as a BV space or a Sobolev space and X is the space in which we measure distortion. Examples of the above problem occur in denoising in image processing, in numerically treating inverse problems, and in the sparse recovery pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2004